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THE BIS TELESCOPE
A proposal for a telescope mirror to be built in space

by Nevin Sherman
Lawrence Livermore National Laboratory
Livermore, California 94550

(Abstract)

The conventional technique for producing a perfect paraboloidal
surface by rotating a bucket of fluid is introduced as the "simple model,"
which becomes the standard of reference by which other dynamical
methods for forming parabolic mirrors may be judged. Departures from
this model are known as perturbations of the simple model.

An abbreviated history is presented of several highlights in the
formation of liquid parabolic mirrors: E. Borra and coworkers on liquid
mercury mirrors; R. Angel et al.,, on large, stiff, honeycomb paraboloids
of borosilicate glass; and the European Southern Observatory's (ESO)
effort on lightweight, thin, low-expansion glass mirrors with actively
controlled figures.

The general perturbations from the simple model, inherent in
the spin-casting of large paraboloids on the Earth's surface, are
considered, couched in terms of a nominal mirror model of 20-m
aperture and f/1 focal ratio.

A logical extension of the mirror spun-cast on the Earth's surface
is then presented: i.e., a dynamical analogue, spun-cast in space. The
space-spun system, accelerated by tether restraint, introduces additional

perturbations from the simple model. The nature of these



perturbations is discussed in terms of the nominal 20-m mirror for
tether restraints of both 1 and 10 g's. Limited by the confines of this
general overview, a favorable case is made for truly large telescope
mirrors to be built in space (BIS) as the "wave of the future." The paper
concludes with a proposal for a 2-m mirror to be studied by computer
modeling and, perhaps, to be spun-cast in space to validate the

technique.

1. INTRODUCTION

It is well known that the surface of a fluid in a bucket becomes a
paraboloid of revolution when the bucket revolves at constant angular
velocity about an axis fixed in an inertial frame and which is coincident
with a constant, parallel field of force. This is referred to later as the
simple model.

The liquid parabolic mirror is a surprisingly old concept, as
revealed by Ermanno Borra et al., having been proposed on more than
one occasion over the last two centuries [1]. In fact, the simple model
may be as old as the invention of the calculus [2]. The physicist R.W.
Wood—in 1908—appears to have been the first to achieve fair success
with this concept [3]. He spun a 20-inch pan of mercury, mounted on a
vibrationally "isolated" turntable, which in turn was set up on a heavy
concrete structure at the bottom of a well. The turntable was spun
through a homemade "magnetic clutch” by a motor in an adjacent well.
The focal length could be varied by controlling the angular velocity.
Subsequently, an optical flat was used to deflect the moon's image into

the well and, after great care in the centering and alignment of the
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rotation axis along the vertical, a good, stable image was achieved,
somewhat marred by slight vibrations of the turntable and by variations
of its rotation rate. In a presage of future needs, Wood hoped to find a
suitable material which could be spun in a fluid state and allowed to
solidify, forming a parabolic mirror. He also suggested a nearly
parabolic bottom to save mercury.

R.A. Schorn has examined the same concept with reference to the
greater possibilities made feasible by new technology [4]. In particular,
he reviewed recent progress with liquid mercury mirrors made by
Ermanno Borra and his associates at the Université de Laval, Quebec,
Canada [5]. Relatively cheap, high-quality liquid-mirror telescopes
could be used as zenith transit telescopes. By some sacrifice of off-axis
image quality (coma), together with a modified charge coupled device
(CCD) readout, one might "track” a small region in declination and
hour angle about the zenith. Thus, a "picket fence" of relatively
inexpensive transit instruments might play a role in the frequent
monitoring of a band in the night sky.

The most recent case for the very large liquid (mercury) mirror
zenith-transit telescopes is ably stated by Borra and his collaborators [1,6].
They achieved several surprising experimental results and conclusions.
The first was that the mirror spin-axis alignment was not too critical.
For their 1.65-m mirror, diaphragmed to 40 cm, tilting the mirror by as
much as 20 arc seconds produced no observable change in the parabolic
figure as seen in the knife-edge test. They found that the images moved
by twice that amount while remaining sharp and unaltered; thus, for
small tilts, the central part of a liquid mirror behaved as if it were solid.

They presumed the same behavior for the edges [6]. In the same
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reference, they performed an inadvertent but significant experiment.
The mirror container, which was unstably supported, underwent a
clearly discernible wobble with an amplitude of several arc seconds and
an alteration to the mirror’s spin period. To their surprise, the results |
of the knife-edge test and imagery remained stable. After some
consideration of mechanisms, they concluded that this effect would
permit the use of relatively low-quality bearings, with a concomitant
and substantial saving in cost. They also found, as expected, that
concentric, mirror-centered stationary waves, excited by vibrations from
external sources, were effectively damped by the application of a high-
viscosity surface layer (glycerin). They proposed mirrors as large as

30 m. The experience gained helps in the understanding of the
limitations to the whole spun-cast mirror concept. However, should
the mirror space-manufacturing techniques that are outlined below
prove feasible, then the astronomical impact of this ingenious
adaptation of the liquid mercury mirror, with all its inherent
limitations (tracking), remains in doubt. The same point might be
extended to all large Earth-bound telescopes.

Since 1985, Roger Angel, at the University of Arizona, has been
spinning a large oven of molten glass on a massive turnable [7,8]. He
has produced low f/ratio paraboloids from much less glass. This cuts
both cost and time because, in the limit, it requires only half the glass,
one-fourth the annealing time, and very much shorter grinding and
polishing stages. For example, a conventional 8-m blank of borosilicate
(Pyrex) glass having an aspect ratio (diameter/thickness) of 8:1 would
weigh about 280 000 pounds (127 000 kg) and would require 6 months to

anneal. The corresponding figures for an 8-m mirror, spun-cast from
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glass chunks and of unit focal ratio [aperture/(focal length)], are about
210 000 pounds (95 254 kg) and 6 weeks. In addition, the approximately
70 000 pounds (31 751 kg) of glass that would have to be rough-ground
from the 280 000-pound blank to produce the paraboloidal surface has
already been removed by spin-casting. Finally, a further reduction of
the mirror weight and annealing time can be obtained with an oven
which has either a thin concave or a hexagonal honeycomb-ribbed
mold. Each technique has both distinct and shared advantages and
some disadvantages. The experiments by Angel explored the latter
technique which, along with simplicity, promises to deliver relatively
stiff, lightweight, thermally responsive mirrors.

By August 1988, Angel's group had delivered a 3.5-m borosilicate
honeycomb paraboloid to the Astrophysical Research Consortium
(ARC) for grinding and polishing. Upon completion of a second 3.5-m
mirror, the same group will attempt one of 6.5 m. Success here will be a
milestone enroute to an 8-m mirror [9].

The European Southern Observatory (ESO) favors the thin,
curved-back mirror, which must be actively supported at many (150)
points, as primaries for its array of four independent 8-m telescopes
known as the Very Large Telescope (VLT) [10]. Each 8-m primary will be
a mere 20 cm thick (an aspect ratio of 40:1) and will weigh about 24 tons.
When used collectively, the array will have a light-gathering power
equivalent to a monolithic 16-m mirror. The first telescope is targeted
for completion by 1994 and the entire project by 1998, at a site in

northern Chile, and at an estimated cost of $250 million.



2. GLASS MIRROR SPUN-CAST ON EARTH

Neglecting the problems of angular velocity control and
vibration of the oven, the spin-casting technique succeeds only to the
extent that the local g-field "appears” to be both constant and parallel.
Viscosity also plays a considerable role for spun glass mirrors. For easy
visualization, consider the following nominal model: a 20-m-aperture
mirror of unit focal ratio or f/ratio. A 20-m-aperture, f/1 mirror has by
definition a focal length equal to 20 m.
2.1 Deviation from Strict Parallelism

On the surface of the Earth, the maximum deviation of the local
g-field from strict parallelism (convergence angle), over a 20-m mirror,
is about 0.32 arc seconds. While strictly central, it may be considered a
parallel field. As pointed out by Borra et al., such large mirrors are
governed by geometrical optics; the critical parameter is the departure of
the slope (derivative) at each point of the nearly parabolic mirror from
that of the paraboloid at the corresponding point, not the departure of
one figure (function) from the other [1]). This differential slope can be
exactly calculated for a central force field. For a distant force center
(distant compared to the mirror aperture), its value varies linearly with
radial distance from the bucket spin-axis and is just the parallax of the
force center. Thus, the maximum differential slope of the 20-m mirror
is about 0.32 arc seconds, corresponding to an image displacement of
twice that amount. The effect is equivalent to a simple change of focus
(11.
2.2 Kinematic Effects

Finally, on the surface of the Earth, there are two weak kinematic

effects (perturbations from the simple model) which result from the fact
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that a coordinate system, fixed on a rotating Earth, deviates slightly
from a strictly inertial frame. The maximum centripetal acceleration of
the Earth's surface (i.e., the mirror coordinate frame) is a negligible
0.035% of gravity at the Earth's equator. The second perturbation is the
fictitious (Coriolis) acceleration of each element of mirror fluid because
of its motion (spin) in the rotating frame of the Earth. The required
bucket (oven) rotational velocity for this £/1 mirror is about 5 rpm. This
angular rate and mirror radius combine with the Earth's diurnal
rotation to produce a maximum Coriolis acceleration which is a
negligible 0.01% of the local g-field.
2.3 Summary for Earth-Spun Mirror

For a 20-m glass mirror, spun-cast on the surface of the Earth and
rotating at several revolutions per minute, the Earth's huge scale and
slow diurnal rotation make the local net (gravitational) field resemble a
parallel and constant force field in an inertial frame. Thus, neglecting
questions of the oven spin velocity control and vibration, the Earth-
spun mirror is an excellent analogue of the simple model. However,
because of the high viscosity of the mirror material, Earth-spun glass
mirrors are not of highest optical quality and require grinding and
polishing. If the g-field could be scaled up, say to 10 times gravity, such

might not be the case.

3. GLASS MIRROR SPUN-CAST IN SPACE
In space there exists an exact, although inapplicable, analogue to
the simple model. It is just the continuous, uniform, rectilinear

acceleration of the mirror bucket along its spin-axis at 1 to 10 g's. This



acceleration must be maintained over a hardening period, say 5 days.
At only 1 g, the terminal velocity would be 1.4% of the velocity of light.
The space-spun mirror utilizes another approximation to the
simple model which bears a superficial resemblance to the Earth-
surface-spun mirror. In space, the local ("constant-parallel”) g-field at
the Earth's surface is replaced by a centripetal acceleration maintained
by swinging a spinning bucket (oven) of fluid on a long tether, at
constant angular velocity, about a distant center-of-mass. The bucket
spin-axis is along the tether; the tether revolution axis is always normal

to the tether and determines the pole of the bucket "orbital" plane

(fig. 1).

4. MAJOR PERTURBATIONS OF THE SPACE-SPUN MIRROR

Now consider the previous mirror—a 20-m-aperture, /1
mirror—as a space-formed mirror. Two cases for the same geometry
will be examined. The tether length (center of mass to bucket) in both
cases is 10 km, but the tether (centripetal) acceleration varies.

In the first case (Case I), the tether (centripetal) acceleration equals
1g. As with the Earth-spun mirror, the bucket spin period is about 5
rpm. The bucket orbital period, about the center of mass, is 3-1/3
minutes.

This substitution of a rotational tether-restraint on the spinning
bucket system for the ideal, but impossible, constant rectilinear
acceleration makes a rough analogue of the simple model possible—at a
price. The limitations of tether length and tensile-strength, together
with the high angular velocities necessary for reasonable restraint

accelerations, drive the unwanted kinematic effects, so small in the
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Earth-bound system, into the realm of perturbations which must be
investigated.
4.1 Deviation from Strict Parallelism

For a 20-m mirror, the maximum deviation of the g-like tether
acceleration from strict parallelism is now a much larger 206 arc seconds
(the parallax of the center of mass). In the general case for the space-
spun mirror, the tether restraining accelerations on mirror fluid
elements are neither parallel nor central. These centripetal
accelerations are always directed along the perpendicular from the
individual fluid elements to the pole of the orbit. Consider the
accelerations on fluid elements along a mirror diameter. When that
diameter is normal to the bucket orbital plane, these accelerations are
parallel and are coplanar. When that diameter lies in the orbit plane,
these accelerations are central and coplanar (fig. 1). At any intermediate
position, the accelerations are "skewed" and have no common plane.
The effect of such a varying (time and "type") field cannot be
accommodated in a simple analysis. A worst-case, but very unrealistic,
treatment of this effect is the assumption of a steady state central
acceleration on all mirror fluid elements. Such a perturbation would
produce a maximum change of slope of 206 arc seconds (parallax of
center of mass) from the equivalent parabolic mirror. The net effect is
undoubtedly much smaller. In reality, the fluid elements on a mirror
diameter experience a "skew" field fluctuating between the extremes,
which are planar central and planar parallel, but which is heavily time-
weighted towards the parallel field. Finally, it is likely that the observed
insensitivity of the liquid mercury mirror to the alignment of its force

field with the bucket spin-axis may come to the rescue of the space-spun
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glass mirror. A 20-arc-second displacement between a tether centripetal
acceleration and the bucket spin-axis, for a 10-km tether, is 1 m or 10%
of the maximum possible excursion.
4.2 Coriolis Acceleration

The 5 rpm angular rate and mirror radius combine with the
bucket's orbital revolution of 3-1/3 minutes to produce a maximum
Coriolis acceleration which is 3.2% of the g-like tether acceleration. The
Coriolis acceleration, expressed as a triple vector product, resolves into
components along the bucket spin-axis and along a bucket fluid element
position vector. The space mirror tether geometry, in which the bucket
orbital angular velocity is normal to the bucket spin-axis, forces the
resolution into a single component along the tether (bucket spin-axis).
This Coriolis effect, stationary in the rotating center-of-mass system,
subjects the mirror fluid elements to a force which varies linearly with
the distance from the bucket spin-axis (tether) and sinusoidally with the
bucket spin period. Its direction is alternately parallel and antiparallel
to the tether; i.e,, it is always a contribution to the "parallel” field.
Except for amplitude, it is equivalent to a spun mirror formed at the
equator of the Earth. Its action on the bucket is that of a set of
distributed symmetric couples where, in the spinning bucket system, it
produces an alternating augmentation and diminution of the tether
force over successive half periods. It is 90° out of phase with the central
field phase of the "parallel" perturbation discussed in 4.1 above.
Specifically, the Coriolis acceleration has its maximum absolute value
when a fluid element lies on a mirror diameter normal to the bucket
orbital plane; i.e., parallel to Q, designating the pole of orbit (fig. 1).

The value is zero when the fluid element passes through the orbital
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plane. The effect, relative to the tether g-like force, is that the "weights"
of bucket fluid elements undergo periodic fluctuations over a
maximum range of £3.2% at the outer rim.

This "Coriolis" perturbation affects the spinning bucket (oven) in
two ways.

First Effect of Coriolis Acceleration. There is an alternating
"squish” of the molten mirror material from one side of the orbital
plane to the other; i.e., from the currently "heavy" side of the mirror to
the "light"” side. This is best seen by again considering fluid elements
along a mirror diameter. The Coriolis force on each of these elements is
a sinusoidal force, normal to the mirror bottom, with an amplitude
proportional to the radial displacement of the element and the period of
the mirror. This forcing function tries to drive a standing wave in the
mirror material (sloshing) with the same period, with a wavelength of
twice the mirror diameter, and with a node at the mirror center. For a
liquid of very low viscosity (e.g., mercury), the bucket spin frequency
should be as far as possible from any natural resonant frequency of the
bucket and mirror material. There should be no such problem with a
highly viscous material like molten glass. In addition, the honeycomb-
ribbed mold (baffles) and/or very thin fluid layer further enhance the
viscous damping action in any mirror material.

Second Effect of Coriolis Acceleration. In a freely spinning
bucket, such a set of symmetric distributed couples would produce a
torque in the orbital plane which, combined with the bucket spin
angular momentum, would maintain a direct or retrograde steady
precession of the bucket spin axis. (It cannot produce a steady precession

but can only maintain it if it already exists.) The response is more
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complicated here because this "tipping" torque is compounded with a
torque produced by the tether tensile (g-like) restraint.
4.3 Tether-Induced Precessional Torque of a Single Bucket

The requirement that the bucket spin axis always be aligned along
the tether forces the bucket spin axis to make one revolution about the
center of mass once each bucket orbital period. The tether accomplishes
this by rotating the bucket spin axis in the orbital plane, producing a
torque normal to this plane. Such a torque, in concert with the bucket
spin angular momentum, would maintain a freely spinning bucket in a
steady precession normal to the plane of the orbit, if that precession
already exists, but cannot initiate this precession. Again, the true
response is more complicated because this precessional torque is
compounded with the tether tensile restraint. Since the orbital angular
momentum is only 1000 times larger than the bucket rotational

momentum, this is not a negligible effect.

5. CONSERVATION OF ANGULAR MOMENTUM

The torques required by the simple single-bucket space model
described above cause two of the perturbations from the simple model.

The first perturbation-causing torque is in the orbital plane (the
Coriolis acceleration of the spinning off-axis bucket structure which
produces a "tipping" of the mirror about the orbital plane)}—i.e., the
second effect of Coriolis acceleration described above. (Note: Although
not a practical solution, in principle—for any geometry and a very
special set of rotation rates—it is possible for a single bucket mirror to
have the required orbital plane precession, maintained by the above

Coriolis torque, which will just satisfy the required tether alignment
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described next, although this is neither a stable nor a desirable solution
to these problems.)

The second perturbation-causing torque is normal to the orbital
plane (bucket spin axis always aligned along the tether)—i.e, the tether
restraint precessional torque described in 4.3 above.

Both of these perturbations arise because the angular momentum
of the spinning bucket is not conserved. (Torquing a nonspinning
bucket poses no problems.) Fortunately, there is an easy remedy. By
simultaneously forming identical pairs of mirrors in radially adjacent,
counter-rotating ovens (as shown in fig. 1), the total bucket spin angular
momentum is zero, and the necessary torques produce no unwanted

side effects.

6. NEGLECTED PERTURBATIONS

There are other perturbations of the space-based system not
addressed here because they should be of lower order; i.e., tidal stresses
in the mirror itself—some 20 orders of magnitude below the tether
restraint acceleration—and radial oscillations in the tether. The tether
oscillations are a small unknown quantity. This is not a "spring"
system with the usual restoring force. There is no restoring force per se;
the entire space center-of-mass system, including the bucket, is in orbit
about the Earth. Short-period tether oscillations ("twanging”) can be
effectively damped and can, moreover, be easily incorporated into a
computer-modeled study of the system.

Perturbation is a term which has been loosely applied. In this
paper it has one of two interpretations: either it refers to a difference in

some particular acceleration between that experienced by a fluid
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element of the simple model and its corresponding element of the
space-spun orbiting system, or it refers to the time-integrated effects of
such an "anomalous" differential acceleration. The appropriate
interpretation is clear from context. In light of the above, the remaining
perturbations from the simple model are of two types: (1) gravity
gradient perturbations, and (2) non-inertial motion of the center of
mass.
6.1 Gravity Gradient Perturbations

These arise from a nonuniform force field acting on an extended
system. The entire center-of-mass, space-spun system is an extended
one in the neighborhood of the Earth. This gives rise to a differential
attraction between the Earth for the bucket and for the remaining mass
of the system, the so-called gravity gradient forces. These "tidal" forces
are transmitted to the bucket through the tether, as is the centripetal
(tensile) tether restraint between the bucket and the center of mass.
6.2 Non-Inertial Motion of the Center-of-Mass

In the simple model, the rotating bucket system with constant,
parallel, external force field is embedded in an inertial frame or,
equivalently, the spinning bucket undergoes a uniform rectilinear
acceleration along the bucket spin axis. The entire center-of-mass space
mirror system is not an inertial frame but, neglecting other bodies, is
one accelerated nonuniformly in its orbital motion about the center of
the Earth. However, all such effects can be rendered insignificant by
various devices; e.g., by "firing" the entire system into an elliptical
geocentric "construction” orbit whose plane is normal to the bucket
orbital plane about the center of. mass. The period of the construction

orbit should be greater than the hardening time. The hardening time is
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the period required for sufficient cooling of the mirror so that it can
retain its parabolic figure against all stresses.
6.3 Discussion of Case IT

In the second case to be examined (Case II), the tether (centripetal)
acceleration equals 10 g. In this case, the bucket spin period is about 15
rpm, and the bucket orbital period is 63.5 seconds.

Consider an ng tether with a fixed geometry and mirror figure
(f/ratio). In a simplified analysis, the ratio of the Coriolis acceleration to
the tether restraint acceleration is proportional to the ratio of the bucket
spin angular velocity to the bucket orbital angular velocity. This ratio
must be invariant if the f/ratio is to be preserved. Thus the relative
Coriolis perturbation is the same as for Case I for all values of n. While
the ratio of the Coriolis to tether accelerations is preserved, the torques
are not, but we can eliminate their precessions by the mirror "pair-
production” technique. To reduce the perturbations themselves, we can
do any or all of the following: reduce the mirror aperture, increase the
tether length, and/or increase the focal ratio.

The point to be made is that once a particular geometry (tether
length and mirror specification) is adopted, the relative magnitudes of
the perturbations are frozen, but their periods are not. Neither is the
ratio of the tether g-like force to the viscous-creep forces. For a given
geometry, the former is controlled by the square of the orbital angular
velocity. Increasing the tether force, relative to the molten glass viscous
forces, will enhance the mirror quality by making the mirror figure
more responsive to the larger time-averaged forces—unlike the Earth-
based system where the g-force is just the force of gravity. At the same

time, the compensatory increase in the bucket spin velocity, necessary to

15



preserve the mirror f/ratio, should diminish the effects of the
perturbations by integrating out their rapid oscillations over a period,
shorter yet by comparison with the characteristic viscous-creep response
time. At first sight, higher tether forces appear to buy higher optical
quality, a conjecture that can be answered by computer modeling which
incorporates the rheological properties of glass, or perhaps by limited,
small-scale tests in space. If this conjecture proves true, the exploitation
of higher tether forces is an advantage of the space-based system, with

no earthly analogue.

7. ADDITIONAL COMMENTS ON HIGH-g TETHERS

Although unconfirmed by computer simulation for a glass
mirror spun-cast in space, one expects better mirror figures from higher-
g tethers. The price to be paid for increasing the g-loading is that the
tether mass becomes a larger fraction of the total mass to be orbited. The
total mass includes the tether mass plus that of the loaded buckets (end
mass). Rather than adopt a tether of standard cross section, one can
calculate the constant cross section—and hence the mass—of an ng
tether of length L, required to support an adopted end mass m..

As pointed out by one reviewer, such a 10-km tether, sustaining
10 ¢'s at its extremity, will be about three times the adopted end mass.
This reviewer believes that the advantages of spin-casting in space will
only appear for tether restraints of 10 g's or so. He also thinks that the
high freight costs to space for such a high-g tether will detract from the
appeal of the concept.

The author's results for an ng, Kevlar 149, 10-km tether of

constant cross section are, for several values of n, as follows:
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n=1, m,=0.17 m,

n=5 m=105m,

n=10,m,=286 m,
where m, is the tether mass and m. is the end mass (buckets plus
mirrors).

Returning to the reviewer's second point: although it appears
that high-g space-spun systems would be preferable, except for freight
costs, it does not necessarily follow that lower-g systems have little
merit. Suppose a mirror of 20-m or larger aperture could be spun-cast
on the Earth's surface (1 g), then ground and polished to a good figure.
Would this be of much value? Not on the surface of the Earth, where
the problems of seeing, mechanical support, and housing for such a
huge system would seriously degrade its value. Only if used in space
would such a large mirror really come into its own. However, the cargo
bay diameter required to transport such a large mirror into space will
not become available in the foreseeable future. The point is that even a
1 g tether might prove useful if the grinding and polishing could be
done in space, and there seems to be no inherent reason why they
cannot.

A final point concerns the high-g tether. In a space-spun tether
system, each element of the tether has only to sustain the orbital weight
of the end mass plus that of the intervening tether; i.e., the weight of all
exterior parts. On the other hand, since all tether elements revolve at a
constant angular velocity about the CM, each contributes to the tether
tension proportionally to its distance from the CM. This suggests the
use of a tapered tether. The inner elements, which support most of the

orbital weight but contribute least to it, should be of larger cross section
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than the outer elements, which support less of the orbital weight but
contribute most to it. A tether of continuous taper is impractical, but a
segmented tether, with each segment having a distinct but constant
cross section, is feasible. For such an ng segmented tether, one can write
a relation for the tether tension of the it segment and cross section in
terms of the tension for the (i + 1) segment. This system can be
recursively solved, in terms of the end mass, from the outermost
segment inward. For example, for a 10-km, 10 g tether comprised of 1-
km segments, one finds:
n=10, m,=2.1m,, which is <2.9 m, for the constant cross
section tether.
The innermost 1-km segment has 1.4 times the cross section, and hence

1.4 times the mass, of the outermost 1-km segment.

8. SUMMARY FOR GLASS MIRROR, SPUN-CAST IN SPACE

The tether-produced g-like field for a 20-m space-spun mirror has
significant perturbations from the simple model. These arise because
the space system is an accelerated (rotating) reference frame. Since the
tether length will always be small compared to the Earth's radius and
the bucket orbital period short relative to the Earth's day, it will never
closely resemble an inertial reference frame. However, since the g-like
acceleration of the tether restraint can be scaled up, relative to the
viscous forces of a molten mirror, and since the perturbation period can
be made very short, relative to a characteristic viscous-creep response
time, it is possible that the "averaging out" of these periodic
perturbations over a bucket spin period will mitigate their effects

sufficiently so that an acceptable mirror figure is produced. There is an
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irony here. If, ultimately, this technique is successful in space, its
success will depend on the viscosity of the mirror material—the very
reason mirrors of glass, spun on Earth, are not paraboloids of optical
quality. On Earth, mercury mirrors are "perfect”; glass ones are not. In
space, mercury mirrors may never be perfect because they track the
perturbations; spun-cast glass mirrors, on the other hand, may prove to
be fairly good. Only computer simulation or trial will tell, although a
viscous phase lag is an essential ingredient for the success of a space-
based system.

Because an Earth-based system closely resembles an inertial
reference frame, while a space-based system does not, these techniques
bear only superficial resemblance to one another. They both spin
mirrors; that is the extent of the resemblance. Whether or not such a
space-spun mirror is feasible can be answered by a careful computer-
modeled study of the viscous fluid flow equations of motion, subject to
the forces and boundary conditions which have been sketched. Such a
study should make it possible to isolate a configuration space for
success, if one exists, among the regime of parameters:

. Tether length and orbital angular velocity (which implies

tether acceleration).

° Mirror aperture, f/ratio, and spin angular velocity.
o Mirror material viscosity.
. Total mass of mirror material, plus bucket (which, with mass of

tether and tether acceleration, imply tether tensile force.)
Omission of tether tensile strength as a dimension of the success
configuration space is not an oversight. Requisite tether tensions can be

met in many ways: e.g., multiple tethers (cables), various cable
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diameters and materials, etc. So, from the total "success volume," a
subset can be chosen that can be satisfied by some realistic tether
geometric structure.

It should not be assumed that the success of the Earth-based spun
mirror technique implies success for the space-based system. Nothing
could be further from the truth. Certainly, a carefully considered
analysis cannot dismiss the study of this space-based spun glass mirror
production technique simply because it is already being done on Earth.
It is not.

A "real" case may be selected to obtain a feeling for the masses
and forces involved—namely, a 1/10th-scale (2-m) mirror on a 10-km
tether. All the geometry requires is that a center of mass (CM) be
established in space, by whatever means, around which a pair of 2-m
"ovens," counter-rotating about the tether axis, are whirled. The CM
can be set up in a variety of ways. One way is to have a 20-km tether
separating two identical pairs of counter-rotating buckets ("ovens").
This is not a bad choice if a total weight (mass) to orbit is used as an
overall measure of efficiency. Mass dispersal is the key; if the shortest
tether (10 km) is required, it is necessary to anchor the tether in an
asteroid (infinite mass). The following proposal, illustrating the above

case, provides some order-of-magnitude mass estimates.

9. PROPOSAL FOR A 2-M (1/10th-SCALE) MIRROR

This proposal illustrates one particular geometry for the
simultaneous space manufacture of as many as four test spun-cast
mirrors at 1/10th scale. The nominal plan is for two sets of two coupled

counter-rotating buckets (ovens), separated by a 20-km tether; for this
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example, assume a tether made of DuPont KEVLAR 149. (The relevant
physical properties of KEVLAR 149 appear in Ref. 11.) At least one of
the four buckets (ovens) is active; any, or all, of the others could be
dummies with the appropriate weight distributions required to
establish the center of mass. Dummy pairs would not have to be spun.
If this or a similar program reaches the "engineering” phase, those
physical properties of the tether material characterizing its reaction to a
space environment (temperature, vacuum, and radiation) will also play
a dominant role in its selection.

The following description contains both metric and English
units, with one force-pound equal to 4.44822 Newtons and one
kilogram equal to 2.2046 mass-pounds.

A KEVLAR 149 tether of 1-square-inch cross section (6.4516 cm2)
can, with a safety factor of two, support a tensile force of 250 000 force-
pounds (1 112 000 Newtons). With a density of 0.636 pounds per linear
foot, a 10 km by 1 square inch tether has a mass of 20 866 pounds (9464.8
kg or 9.4648 metric tons). The total mass for a 20 km by 1 square inch
tether, to be transported to orbit, is 41 732 pounds (18 930 kg or 18.9
metric tons).

A 2-m blank of 10-cm thickness (aspect ratio = 20:1), with a
specific gravity of 2.5, has a mass of 1730 pounds. A 2-m, f/2 paraboloid
(depth of 6.25 cm, with minimum thickness of 3.75 cm) has a mass of
1190 pounds. With a honeycomb-ribbed-back mirror, the mass is
probably well below the adopted mass of 1000 pounds (454 kg). The total
adopted mass for four mirrors, or equivalent dummies, to be
transported into orbit is thus 4000 pounds (1815 kg). Assuming that

each oven is 10 times the mirror mass, the total oven mass-to-orbit is
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about 40 000 pounds (18 150 kg). This high estimate of some 86 000
pounds to orbit is roughly 1.5 shuttle loads and includes such ancillary
equipment as power supplies, sensors, and control mechanisms. A
modular tether construction can be anticipated, to be assembled from 1-
km lengths of 950 kg/km, with each km on a 3-m-diameter, 3-m-long
spool (about 100 turns per spool). The 1-km sections, equipped with
"hooks and eyes" are easily coupled by astronauts. The tether may have
a thin metallic (aluminum?) coat for protection against solar ultraviolet
and the vacuum of space. One can imagine these 1-km, 1-ton sections
as background cargo for every unfilled shuttle manifest. They are
transported to orbit, joined with the previous cache, and perhaps stored.

The "weight in space” of the deployed, whirling orbital system for
the 1 g total tether must also be considered. The tether tension consists
of two parts: the integrated "weight" of the tether over its entire 10-km
length, and the weight of mirrors and ovens, all in a 1 g field. Since the
centripetal (restraining) tension varies linearly with radius for constant
orbital angular velocity, the tether "space weight" is exactly one half of
its value at 1 g, namely 10 433 force-pounds (4732 kg or 4.73 metric tons).
The space weight of the mirror-oven combination is just the weight of a
coupled pair: 2000 + 20 000 = 22 000 force-pounds (97 860 Newtons). So
the total tether tension is just 32 433 force-pounds (144 300 Newtons).

The corresponding tether tensions (total space weights) for 5 g
and 10 g tethers are about 162 200 and 324 300 force-pounds (722 000 and
1 443 000 Newtons) respectively. Computer simulations of this
proposed model, over this range of tethers, are significant.

Although deployed by the space shuttle, the system is completely

autonomous in operation. Short-term stability of the bucket spin
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period, less than one revolution, is passive. It relies on the stability of
the bucket's spin-axis moment of inertia. The long-term stability,
greater than one period, could be mechanically tuned by vernier control
of this moment of inertia. At present the spin-period sensing
mechanism is in doubt.

The rapidly changing bucket spin equator makes sidereal sensing
difficult. The bucket spin period could be sensed by timing successive
"transits" of a selected stellar reference through the field of a transit
instrument whose plane of motion contains the bucket spin axis. This
instrument would have to be computer-driven to anticipate the
changing stellar "declination" between successive transits. Further,
because of the Earth's proximity, any single stellar reference could be
occﬁlted by the Earth for as much as half of the Earth orbital period, and
so several references would be required. A self-contained optical sensor
would be ideal, but unknown tether torsion would make such an
independent system difficult; high g-loadings make reliable gyroscopic
sensing difficult. However, the last may have sufficient stability over
several spin periods to be useful. If so, this scheme would undergo
frequent updatings. The short-term stability of the bucket orbital period,
namely tether revolution, is also passive and relies on the inherent
stability of the orbital moment of momentum over an orbital period.
The long-term stability could be mechanically tuned in a manner
similar to the previous case. A pair of spider-masses performs a radial
crawl along the tether, symmetric with respect to the CM, preserving
the orbital moment of momentum. Sidereal sensing detects variations

in the system's orbital period.
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10. CONCLUSION

The technical feasibility of this scheme for the space manufacture
of large high-quality telescopic mirrors, simple in principle, could be
established by computer simulation. If feasible, the space shuttle
provides an excellent platform from which to try a prototype. Other
than the cost of freight to space, the process might be relatively
inexpensive, especially when amortized over many mirrors. The
important points are that the system can be assembled incrementally
and that, once delivered to orbit, each increment may be repeatedly
used.

Even if the optical quality turns out to be marginal, the process
may still succeed by application of a computer-controlled polishing lap.
Computer-controlled ion-scouring techniques may also become
practical. Finally, the technology is available to enhance the
performance of large mirrors by removing instrumental aberrations
through digital deconvolution rather than by optical correction. The
extremely accurate collimation of very stable fiber optic coherent light
sources, together with CCD digital readout, where pixel resolution is
aided by the large focal length of even the low f/ratio mirrors, will
make automated image plane mapping a fast and accurate technique.
Thereafter, digital images can be automatically deconvolved, and
further processed, by on-line dedicated computer software.

It is doubtful that such extremely large single glass mirrors can be
built on Earth, but even if they could, their transport into space would

be impossible. Manufacture in situ is the solution to this dilemma. As
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a test case, preliminary work on a 1/10th-scale, 2-m mirror with a 10-km
tether should pay dividends.
The presence of large light-gathering, high-resolution telescopes

in space will revolutionize astronomy.
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